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Abstract
We investigate the solution of the quantal time-dependent linear oscillator
from the viewpoint of the Lie point symmetries of its time-dependent
Schrödinger equation. Four of the five nongeneric symmetries can be used
for the construction of wavefunctions, two as creation symmetries and two
as annihilation symmetries. The fifth nongeneric symmetry provides an
eigenvalue for the Lie Bracket which maps a solution symmetry to itself.
The general treatment indicates that care must be taken with the selection of
solutions of the classical equation for the time-dependent linear oscillator and
its third-order self-adjoint counterpart to obtain results which are consistent
with the standard results for the autonomous harmonic oscillator.

PACS numbers: 02.20.−a, 02.30.Hq

1. Introduction

In this paper we treat the quantal time-dependent linear oscillator from the viewpoint of the
construction of its wavefunctions from the Lie symmetries of its time-dependent Schrödinger
equation. In the process we uncover some critical features of the representation of the algebra of
these Lie symmetries which have not been previously discussed. Indeed they were not obvious
in recent treatments of the corresponding autonomous harmonic oscillator and related systems
[1, 5] since the choice of representation for those discussions was made under the influence
of the explicit functions present in the Lie symmetries obtained. Specifically we find that
the representation of the algebra has an arbitrariness in the choice of the coefficient functions
of the symmetries which must be constrained in order that the wavefunctions constructed
using the symmetries are consistent with the asymptotic behaviour required. In our treatment
here of the time-dependent linear oscillator the function ω(t) is arbitrary apart from some
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modest requirements of differentiability. In section 2 we report the Lie point symmetries
of the Schrödinger equation for the time-dependent linear oscillator. Naturally the form of
the Schrödinger equation must be the time-dependent form since separation of variables as
in the case of the autonomous oscillator is not a proposition. In section 3 we demonstrate
the construction of solutions of the time-dependent Schrödinger equation. Basis functions
are obtained by considering similarity solutions invariant under one or other of the Lie point
symmetries. Further solutions are generated by means of the action of symmetries on solution
surfaces producing solutions, sometimes new, sometimes trivial. The actual implementation
of this procedure is effected through a specific Lie Bracket. In this section we do not take
into account the requirement that the wavefunction vanish at spatial infinity. In section 4 we
see that an appropriate choice of the representation of the Lie point symmetries enables us to
construct a consistent set of creation and annihilation operators for the time-dependent linear
oscillator and that this set leads to wavefunctions with the required behaviour at spatial infinity.
Finally in section 5 we present our concluding observations.

2. The Lie point symmetries

The time-dependent Schrödinger equation for the one-dimensional time-dependent linear
oscillator is

2i
∂u

∂t
+

∂2u

∂x2
− ω2(t)x2u = 0, (2.1)

where t is the time variable, x is the space variable and ω2(t) is the time-dependent ‘frequency’.
Apart from a requirement of differentiability there is no restriction upon the function ω(t) as
far as the investigation of symmetry is concerned. However, when one considers the usual
physical applications, the function ω(t) would be a positive real function.

Equation (2.1) possesses the symmetries

�1 = ν1∂t + 1
2xν̇1∂x + 1

4 (ix2ν̈1 − ν̇1)u∂u

�2 = ν2∂t + 1
2xν̇2∂x + 1

4 (ix2ν̈2 − ν̇2)u∂u

�3 = ν3∂t + 1
2xν̇3∂x + 1

4 (ix2ν̈3 − ν̇3)u∂u

�4 = iσ1∂x − σ̇1xu∂u

�5 = iσ2∂x − σ̇2xu∂u

�6 = u∂u

�7 = f (t, x)∂u,

(2.2)

where f (t, x) is any solution of (2.1), νi, i = 1, 2, 3, are any three linearly independent
solutions of

˙̇ν̇ + 4ω2ν̇ + 4ωω̇ν = 0 (2.3)

and σi, i = 1, 2, are any two linearly independent solutions of

σ̈ + ω2σ = 0. (2.4)

Equation (2.3) is integrated to the Ermakov–Pinney equation by means of the integrating
factor ν and the change of dependent variable ν = ρ2. Specifically we have
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ν ˙̇ν̇ + 4ω2νν̇ + 4ωω̇ν2 = 0

νν̈ − 1

2
ν̇2 + 2ω2ν2 = 2K

ρ̈ + ω2ρ = K

ρ3
,

(2.5)

where K is the constant of integration. Equation (2.5) is the Ermakov–Pinney equation. In 1950
the recently late Edmund Pinney [6] provided the solution in terms of the linearly independent
solutions of the Newtonian equation of the classical time-dependent linear oscillator given by

ẍ + ω2(t)x2 = 0. (2.6)

If a solution set of (2.6) is {η(t), ζ(t)}, the solution of (2.5) is

ρ(t) =
√

Aη2 + 2Bηζ + Cζ 2, (2.7)

where the three constants satisfy the relationship B2 − AC = W 2/(4K) and W is the
Wronskian, namely ηζ̇ − η̇ζ , of the solution set of (2.6) and is a constant. From this relation
we may establish expressions for the linearly independent solutions of (2.3) in terms of those
of (2.6). We take

ν1 = η2 (2.8)

ν2 = ηζ (2.9)

ν3 = ζ 2. (2.10)

We observe that this choice is arbitrary, although convenient for our purpose, and any other
choice could be made. We emphasize through our choice of the symbols η and ζ for two
linearly independent solutions of (2.6) that the solution set of (2.5) need not be constructed
from the specific solution set of (2.6) used in the expressions for the coefficient functions of
�4 and �5.

3. Construction of the wavefunctions

In the standard way we use the symmetries to construct solutions of the Schrödinger
equation (2.1). Motivated by earlier experience with time-independent problems [1, 5] we
select one of the solution symmetries, say �4. The invariants of �4 are obtained from the
associated Lagrange’s system [3]

dt

0
= dx

iσ1
= du

−σ̇1xu
(3.1)

and are t and u exp
[− 1

2 iσ̇1x
2/σ1

]
. We assume a similarity solution of the form

u = exp

[
1

2
i
σ̇1

σ1
x2

]
f (t) (3.2)

and substitute it into (2.1) to determine the form of the function f (t). We find that f (t) = σ
−1/2
1

so that the basic solution is

u(t, x) = σ
− 1

2
1 exp

[
1

2
i
σ̇1

σ1
x2

]
. (3.3)
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Closed-form solutions of (2.4) are not common. Some have been given in the paper of
Eliezer and Grey [2] and we tabulate them here. We note that Eliezer and Grey give just ω(t)

and ρ2(t). We include σ1(t) and σ2(t). For these we have made a particular choice of basis.

ω(t) ρ2(t) σ1(t) σ2(t)

a/t αt t (α+2i)/2α t (α−2i)/2α

1
2

/
t t[A(log t + B)2 + A−1] t1/2 t1/2 log t

a/t2 βt βt exp

[
i

β2t

]
βt exp

[
− i

β2t

]
atk t1/2

[
J 2

γ (τ ) + Y 2
γ (τ )

]
Jγ (τ ) Yγ (τ ),

(3.4)

where α = (
a2 − 1

4

)−1/2
if a �= 1

2 , β = a−1/2, γ = [2(k + 1)]−1, τ = −2γ atk+1 and Jγ and
Yγ are Bessel functions.

We observe the appearance of the basic solution for these different functions ω(t). For
the first we have

u = (t (α±i)/α)−
1
2 exp

[
1

2
i

(
α ± 2i

2α

)
x2

t

]
. (3.5)

For the upper sign u(t, x) has the correct behaviour at spatial infinity, but is otherwise
unsatisfactory due to the imaginary exponent on t . In the case of the second the basic
solutions are

u = t−1/4 exp

[
i

4

x2

t

]
(3.6)

and

u = (t1/2 log t)−1/2 exp

[
i

4

x2

t
(1 + log t)

]
. (3.7)

Neither of these solutions satisfies the physical requirements of the problem.
For the third we have

u =
(

βt exp

[
± i

β2t

])− 1
2

exp

[
1

2

(
i
x2

t
∓

(
x

βt

)2
)]

. (3.8)

The upper sign gives acceptable behaviour at spatial infinity. In the case of the fourth solution
provided by Eliezer and Grey we have

u = (Zγ (t))−1/2 exp

[
i

2

Żγ (t)

Zγ (t)
x2

]
, (3.9)

where Zγ = Jγ or Yγ . Not only do we have unsatisfactory behaviour at spatial infinity but
there are also problems for finite time in the case of Jγ (t) due to its zeros.

We see that wavefunctions based upon solution of (2.4) do not have good behaviour. In
general, given an ω(t) and a solution ρ(t) of the Ermakov–Pinney equation

ρ̈ + ω2ρ = ρ−3, (3.10)

we have

σ = ρ exp[±iT ], T =
∫

ρ−2(t) dt (3.11)

which leads to the basic solution being

u = (ρ exp[±iT ])−
1
2 exp

[
1

2

(
i
ρ̇

ρ
∓ 1

ρ2

)
x2

]
. (3.12)
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The upper sign gives the correct behaviour at spatial infinity. However, for nonconstant ρ(t)

the wavefunction can oscillate wildly.
In a similar fashion we may use the other symmetries to generate solutions, but for the

moment we concentrate on the solution (3.3) and use it to generate further solutions. There are
two equivalent ways to generate further solutions. One is the use of the concept of a solution
surface [1, 5] which is constructed as  = u−1un(t, x) and a new solution surface obtained
by the action of one of the symmetries. For a general symmetry, � = τ∂t + ξ∂x + υu∂u, the
new solution surface is given as

′ = �{u−1un(t, x)}

= u−1

[
τ

∂un

∂t
+ ξ

∂un

∂x
− υ

∂un

∂u

]
(3.13)

and the new solution is given by the expression within the crochets. The other method is to
make use of the property that the Lie Bracket of any of �1–�6 with one of �7 gives another
member of the infinite set of symmetries �7. With the same symmetry as above the Lie Bracket
is

[�,�7]LB = [τ∂t + ξ∂x + υu∂u, f (t, x)∂u]LB

=
[
τ

∂f

∂t
+ ξ

∂f

∂x
− υ

∂f

∂u

]
∂u (3.14)

and the expression within the crochets is a solution, possibly trivial, of (2.1).
The standard method to generate new solutions is to use the other solution symmetry, in

this case �5 = iσ2∂x − σ̇2xu∂u. Successive applications give the solutions

u1 = Wσx
u0

σ1
(3.15)

u2 = Wσ {iσ1σ2 + Wσx2} u0

σ 2
1

(3.16)

u3 = W 2
σ {3ixσ1σ2 + Wσx3} u0

σ 3
1

(3.17)

....

We note that the action of �4 is to lower the solutions. Thus we have the reductions
u0 −→ 0, u1 −→ iWσu0, u2 −→ 2iWσ u1, u3 −→ 3iWσu2 etc.

We consider now the actions of the sl(2, R) symmetries on u0. We recall the relationships
between the solutions of (2.3) and (2.4). We have ν1 = η2, ν2 = ηζ and ν3 = ζ 2 with
η = α1σ1 + α2σ2 and ζ = β1σ1 + β2σ2 and obtain

�1 u0 −→ 1
2α2(α1Wσu0 − iα2u2)

�2 u0 −→ 1
4 (α1β2 + α2β1)Wσu0 − 1

2 iα2β2u2

�3 u0 −→ 1
2β2(β1Wσu0 − iβ2u2).

(3.18)

In these relationships we note that not one of �1, �2 or �3 acts as a pure ladder operator.
If we make the particular identifications

ν1 = η2 = σ 2
1 α1 = 1, α2 = 0

ν2 = ηζ = σ1σ2 β2 = 0, α2 = 0
ν3 = ζ 2 = σ 2

2 β1 = 0, β2 = 1,

(3.19)
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the results listed in (3.18) become

�1 u0 −→ 0
�2 u0 −→ 1

4Wσu0

�3 u0 −→ − 1
2 iβ2

2u2

(3.20)

so that �1 plays the role of an annihilation operator and �3 the role of a creation operator. In
the case of �3 there is a jump of two solutions instead of the single jump produced by �5.
Normally �1 produces a drop of two states, but, since we were acting on the ground state,
only the trivial solution is possible. In the action of �2 we have an interesting result. The
symmetry maps the solution to itself. This is the generalization of what happens with the
time-independent oscillator for which the symmetry corresponding to �2 is simply ∂t . For
that case the symmetry gives the energy. In the interpretation of the action of the symmetries
on solution surfaces �2 maps the surface to itself.

Equally we could apply the above analysis to solutions obtained commencing with �5.
Essentially, the same results are obtained.

We consider now the solution generated by the symmetry �1. The invariants are obtained
from the associated Lagrange’s system

dt

ν1
= dx

1
2xν̇1

= du
1
4 (ix2ν̈1 − ν̇1)u

(3.21)

and are

v = x

ν
1
2

1

and w = uν
1
4

1 exp

[
− i

4

x2ν̇1

ν1

]
(3.22)

so that we may write the similarity solution in the form

u = ν
− 1

4
1 exp

[
i

4

x2ν̇1

ν1

]
f


 x

ν
1
2

1


 . (3.23)

When (3.23) is substituted into the Schrödinger equation, (2.1), the equation for f reduces to

f ′′ = 0 �⇒ f = A0 + A1v (3.24)

and corresponding to the two constants of integration we obtain the two solutions

u1,0 = 1

ν
1/4
1

exp

[
i

4
x2 ν̇1

ν1

]
= 1

η1/2
exp

[
i

2
x2 η̇1

η1

]
(3.25)

u1,1 = x

ν
3/4
1

exp

[
i

4
x2 ν̇1

ν1

]
= x

η3/2
exp

[
i

2
x2 η̇1

η1

]
. (3.26)

Note that these two solutions correspond to the u0 and u1 above in terms of structure, but
they are not the same since η = α1σ1 + α2σ2. Coincidence is established only if α1 = 1 and
α2 = 0. In the case of �3 the same situation applies with the exception that η is replaced by
ζ = β1σ1 + β2σ2.

If we apply the solution symmetries, �4 and �5, to the solution surfaces corresponding to
(3.25) and (3.26), we obtain

�4 : u1,0 −→ α2Wσu1,1

u1,1 −→
[

iσ1

η
− α2Wσx2

η2

]
u1,0

�5 : u1,0 −→ α1Wσu1,1

u1,1 −→
[

iσ2

η
+

α1Wσx2

η2

]
u1,0.

(3.27)
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We note that the action on u1,0 is closed, but the action on u1,1 is not closed unless η is
identified with σ1, equally σ2.

The middle symmetry, �2, is different—a not uncommon observation with this member
of sl(2, R)—even though the equation has the same form as (3.23). Now we have that f (v),
where v = x/(ηζ )1/2, satisfies

f ′′ − 1
4W 2v2f = 0 (3.28)

which is Whittaker’s equation, also known as Weber’s equation since it was originally
investigated by Hermite [3, p 159].

4. Behaviourally correct wavefunctions

The solutions to the time-dependent Schrödinger equation constructed in the previous section
do not have the suggestion of proper behaviour at spatial infinity since the term exp[iσ̇ x2/σ ],
be it σ1 or σ2, does not have the appearance of a function declining to 0 as x −→ ∞. We
have provided a partial solution through the alternate representation of the solution. Here we
expand upon this theme. A discussion [4] of the Lie point symmetries of the classical equation
of motion of the time-dependent oscillator,

ẍ + ω2(t)x = 0,

gives its eight Lie point symmetries as

�1 = ρ2 sin 2T ∂t + x(ρρ̇ sin 2T + cos 2T )∂x

�2 = ρ2 cos 2T ∂t + x(ρρ̇ cos 2T − sin 2T )∂x

�3 = ρ sin T ∂x

�4 = ρ cos T ∂x

�5 = ρ2∂t + xρρ̇∂x

�6 = x∂x

�7 = ρ−1x sin T ∂t + (ρ̇ sin T + ρ−1 cos T )x2∂x

�8 = ρ−1x cos T ∂t + (ρ̇ cos T − ρ−1 sin T )x2∂x,

(4.1)

where ρ(t) is a solution of (3.10) and the ‘new time’,

T =
∫

ρ−2(t) dt.

We observe that there has been some selection in the choice of coefficient functions. We are
at liberty to take different combinations if they suit our purpose. For the nonce we simply
observe that �3 and �4 correspond to the ‘solution’ symmetries �4 and �5 in (2.2) but not
necessarily respectively. In fact neither cos T nor sin T gives the requisite behaviour in iσ̇ x2/σ

required above since neither −i cot T nor i tan T makes the exponential term go to zero as
x −→ ∞. However, the combinations cos T ± i sin T = exp[±iT ] do give the possibility for
the required behaviour. Arbitrarily we take

σ1 = ρ exp[iT ] and σ2 = ρ exp[−iT ] (4.2)

so that the solution based on �4 has the correct behaviour at spatial infinity. This immediately
casts �5 as the creation operator while �4 is the annihilation operator.
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In fact we may use the symmetries of (4.1) to lead to the friendlier set of creation and
annihilation symmetries for the Schrödinger equation of the time-dependent linear oscillator
as

�± = exp[±iT ]

{
iρ∂x −

(
ρ̇ ± i

ρ

)
xu∂u

}
(4.3)

the invariants of which are found from the solution of the associated Lagrange’s system

dt

0
= dx

iρ
= du

−
(

ρ̇ ± i

ρ

)
xu

(4.4)

to be t and

w = u exp

[
1

2

(
− iρ̇

ρ
± 1

ρ2

)
x2

]
.

The similarity solution is taken to have the form

u = exp

[
1

2

(
iρ̇

ρ
∓ 1

ρ2

)
x2

]
h(t) (4.5)

from which it is evident that the creation symmetry must be �+. On substitution of (4.5) into
(2.1) we obtain

2iḣ +

{
iρ̇

ρ
− 1

ρ2
+ x

(
− ρ̈

ρ
+

1

ρ4
− ω2

)}
h = 0 (4.6)

which reduces to

ḣ

h
= −1

2

(
ρ̇

ρ
+

i

ρ2

)
⇔ h = ρ−1/2 exp

[
−1

2
iT

]
(4.7)

when the Ermakov–Pinney equation is taken into account.
Thus we obtain

u0 = ρ−1/2 exp

{
1

2

[(
iρ̇

ρ
− 1

ρ2

)
x2 − iT

]}
(4.8)

as the behaviourally correct ground state for the time-dependent linear oscillator. The Lie
Bracket of �− with �7 of (2.2) gives

fnew = exp[−iT ]

{
iρ∂x +

(
ρ̇ − i

ρ

)
x

}
fold (4.9)

so that

un =
{

exp[−iT ]

[
iρ∂x +

(
ρ̇ − i

ρ

)
x

]}n

u0. (4.10)

In particular we have for example

u1 = −2iρ−1/2 x

ρ
exp

{
1

2

[(
iρ̇

ρ
− 1

ρ2

)
x2 − 3iT

]}
(4.11)

u2 = 2ρ−1/2

(
1 − 2x2

ρ2

)
exp

{
1

2

[(
iρ̇

ρ
− 1

ρ2

)
x2 − iT

]}
. (4.12)

Unlike the case of the autonomous harmonic oscillator for which i∂t is a symmetry and
which gives the eigenvalue through

i∂tun = Enun (4.13)
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there is no symmetry listed in (2.2) with that obvious simplicity. However, we recall that
the symmetry i∂t for the autonomous oscillator is an element of the algebra sl(2, R) of its
Schrödinger equation and that the choice of ν2 = σ1σ2 gave the very operator we seek, cf
(3.26b). With the choice of σ1 and σ2 above we have

�2 = ρ2∂t + ρρ̇x∂x + 1
2 [i(ρρ̈ + ρ̇2)x2 − ρρ̇]u∂u. (4.14)

The Lie Bracket of i�2 and �7 of (2.2) with f (t, x) = u0 is

[i�2, u0(t, x)∂u]LB = 1
2u0∂u (4.15)

and in general we have

[i�2, un(t, x)∂u]LB = (
n + 1

2

)
un∂u (4.16)

which is an appropriate generalization of the result for the autonomous problem.

5. Observations

In treating the quantal time-dependent linear oscillator ab initio in terms of the Lie point
symmetries of its time-dependent Schrödinger equation we have revealed various features
which are not evident in standard treatments. The primary feature is that the time-dependent
functions in the coefficients of the Lie point symmetries—σ1 and σ2 for the ‘solution’
symmetries and ν1, ν2 and ν3 for the sl(2, R) symmetries—need not be written in terms
of the same basis. Normally this would be the case as is seen in the treatments of the
corresponding autonomous systems [1, 5]. We emphasize that this is not because of necessity.
One presumes that it is simply the mind’s way to minimize the amount of memory required
by recognizing patterns. We find that the mapping of solutions into solutions is not as tidy
as previously reported in the autonomous case. In particular the pure ladder operators of that
case are generally mixed operators here. Only the choice of a particular relationship between
the νs and the σ s restores the pure ladder property. We also find that the construction of
wavefunctions does require some care in the selection of a suitable basis for σ1 and σ2. As
can be seen from (3.4), the selection may not be so easy.

A final observation is the last result in section 4 in which we find that the eigenvalue
of the Lie Bracket which maps a solution symmetry (of the time-dependent Schrödinger
equation, i.e. �7 of (2.2)) to itself is precisely that of the quantal time-independent harmonic
oscillator (the setting of K = 1 in the Ermakov–Pinney equation, (2.5), is equivalent to taking
�2 = 1 for the autonomous harmonic oscillator). This is a curious result. If one follows the
transformation from time-dependent linear oscillator to time-independent harmonic oscillator
outlined in section 1 in the context of the time-dependent Schrödinger equation, one obtains
n + 1

2 as the energy eigenvalue through the Lie Bracket relation

[i∂t , un(t, x)∂u]LB = i
∂un

∂t
∂u =

(
n +

1

2

)
un∂u, (5.1)

where un is now the solution of the Schrödinger equation for the autonomous harmonic
oscillator. However, this is the eigenvalue for the wavefunction of the Lewis invariant and not
the wavefunction of the time-dependent linear oscillator.
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